Basic Valve

900-M Series

IR-900-M Hydrometer with Magnetic Drive

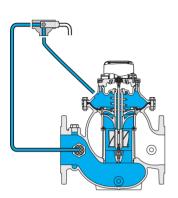
The BERMAD Model IR-900-M is a unique product integrating both a vertical turbine Woltman-type water meter and a diaphragm actuated hydraulic control valve. The vertical turbine impeller drive is magnetically coupled to a vacuum-sealed meter register in the control head. Both the magnetic drive control head and its register(s) are hermetically sealed and are not affected by dirty water nor environmental humidity.

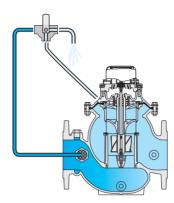
The highly sensitive magnetic drive provides superior accuracy that exceeds all water meter standards. The available Reed Switch and Opto-Electric 4-20 mA transmitter options provide greater flexibility in electrical pulse generation. Serving as Flow Meter and Main Valve, the BERMAD Model IR-900-M controls irrigation together with the irrigation controller.

The IR-900-M provides the full spectrum of metering functions – from simple visual readout, to pulse output for computerized data capture and control – while simultaneously allowing for numerous control valve features such as pressure, level and flow control.

Ranging in size from 1¹/2"; DN40 through 10"; DN250, the 900-M Series is specifically designed for metering and control applications in agricultural and landscape irrigation as well as in municipal & industrial water supply systems. The flow metering unit is vertical to the pipeline and includes an impeller with integrated inlet and outlet flow straighteners. This internal design eliminates the need for straightening distances, enables vertical or horizontal installation, and ensures accuracy even when the valve is partially open during pressure or flow control tasks. The impeller assembly shaft serves as the closure assembly guide, while also centralizing and tightening all internal parts both in their position and to one another.

The basic Model IR-900-M combines simple and reliable construction with superior performance, while at the same time being virtually free of the typical limitations associated with other single chambered valves. The relatively high impeller housing raises the location of the vulcanized seal seat above the valve body. This results in remarkable cavitation resistance and a smooth mushroom-shaped flow where the valve body is distanced from the flow. The closure assembly, combining a rugged radial disk harnessed to a flexible fiber reinforced diaphragm, slides on the guide along the full valve travel. The diaphragm is carefully balanced and peripherally supported to avoid distortion, resulting in long-life and controlled actuation even under harsh conditions. One diaphragm and spring fully meets the valve's operating pressure range requirements. The cover is removable via fastening bolts for quick in-line inspection and service. All the internal assemblies can be easily removed from the valve body with no need for disassembling the valve from the line.

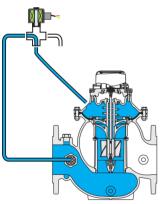




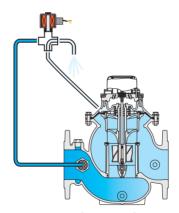
Principle of Operation

900-M Series

On-Off Modes, Local Manual Control



Hydrometer Closed


Hydrometer Open

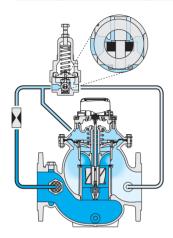
Line pressure is applied to the control chamber of the hydrometer, through the override Cock-Valve. This creates a hydraulic force that moves the valve to the closed position and provides drip tight sealing. Discharging pressure from the control chamber to the atmosphere causes the line pressure under the plug to open the hydrometer, measuring the flow rate.

On-Off Modes, Solenoid Controlled

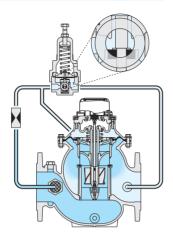
Solenoid Closed Hydrometer Open

Line pressure is applied to the control chamber of the hydrometer, through the opened 3-way solenoid. This creates a hydraulic force that moves the valve to the closed position and provides drip tight sealing. Closing the Solenoid causes it to switch, discharging pressure from the control chamber.

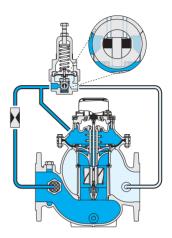
This in turn causes the line pressure under the plug to open the hydrometer, measuring the flow.



Principle of Operation

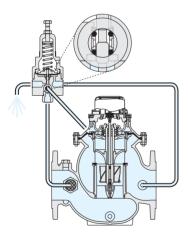

900-M Series

2-Way Modulating Modes, Pressure Reducing Pilot

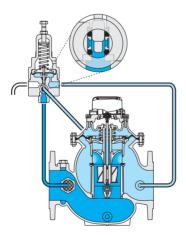

Modulating to Close

The restrictor continuously allows line pressure into the control chamber, while the pilot controls outflow from the control chamber. Throttling when it senses a pressure rise, the pilot causes pressure to accumulate in the control chamber, forcing the valve to modulate closed.

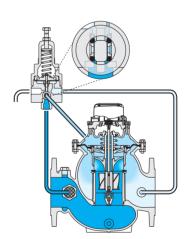
Modulating to Open


The pilot modulates open when it senses a pressure drop, releasing greater flow from the control chamber than the restrictor can allow in. This causes the accumulated pressure in the control chamber to drop, and the valve to modulate open.

Zero Flow Position


When demand drops to zero, downstream pressure begins to rise as the flow enters a closed line. The pilot closes, initiating the valve's irreversible closing process, eventually causing it to seal drip tight.

3-Way Control Modes, Pressure Reducing


Fully Open Position

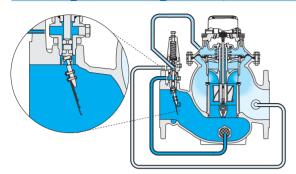
When upstream pressure drops, the pilot blocks the supply pressure port and opens the drain port, venting the control chamber to the atmosphere. This fully opens the hydrometer, minimizing head loss.

Modulating to Close

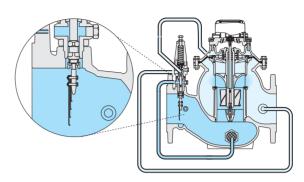
The pilot switches upon pressure rise, blocking the drain port and opening the supply pressure port. This pressurizes the control chamber, forcing the hydrometer to modulate closed.

Locked Position

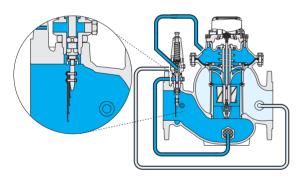
When sensed pressure is equal to setting, the pilot blocks both the drain and the supply pressure ports. This locks the pressure in the control chamber, freezing the hydrometer opening in its last position until conditions change.



Principle of Operation


900-M Series

2/3-Way Modulating Modes, Flow Control


Modulating to Close

Should demand rise above setting, the increasing flow dynamic-force moves the paddle, which thereby pushes up the pilot trim, causing a negative ratio between water flow into and out of the control chamber. Pressure then accumulates in the control chamber, forcing the hydrometer to throttle closed.

Modulating to Open

When demand is below setting, the pilot's spring force pushes the pilot trim down, thereby causing a negative ratio between water flow into and out of the control chamber. Pressure is then released from the control chamber, enabling the hydrometer to modulate open.

Stable Conditions

As long as flow is per pilot setting, the pilot freezes the control chamber inlet and outlet flow ratio. This keeps the hydrometer opening rate constant, allowing the hydrometer to react "on-line" to any anticipated changes in supply and/or demand conditions.

Principle of Operation

900-M Series

[I] Control Head

Includes: Vacuum-sealed meter register, magnetically coupled to the impeller drive. Hermetically sealed control head and its register(s). High sensitivity, providing superior accuracy that exceeds all water meter standards. Range of Reed Switch and Opto-Electric 4-20 mA transmitter options provide greater flexibility in electrical pulse generation.

[2] Valve Cover

Locates, centralizes and fastens diaphragm, spring, and impeller assembly ensuring smooth and accurate performance. Simple and light construction enables quick in-line inspection and service.

(3) Auxiliary Closing Spring

One single spring fully meets valve requirements for operating pressure range, ensuring low opening pressure and secured closing.

[4] Closure Assembly

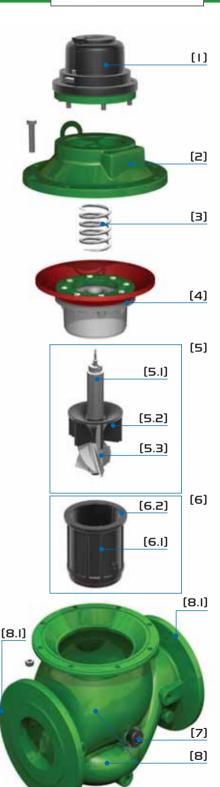
Combining a rugged radial disk harnessed to a flexible fiber reinforced diaphragm. The fully guided closure assembly and the carefully balanced and peripherally supported diaphragm prevent distortion and protect the elastomer, resulting in long-life and controlled actuation even under harsh conditions. One diaphragm and spring fully meet the valve's operating pressure range requirements.

[5] Impeller Assembly

- **[5.1]** Guide Carries the transmission shaft, guides the closure assembly, and centralizes and tightens all internal parts.
- **[5.2]** Upper Flow Straightener Tightens the seal seat in place, straightens outlet flow, and creates mushroom-shaped flow.
- **[5.3]** Impeller Woltman-type impeller with tungsten carbide shaft tips and bearings for high, long-term accuracy and negligible wear.

[6] Impeller Housing

- **[6.1]** Lower Flow Straightener Straightens inlet flow, eliminating the need for straight upstream pipe required in standard water meters.
- **[6.2]** Seal Seat Metal ring vulcanized with elastomeric seal, raised and remote from valve body to prevent cavitation damage.

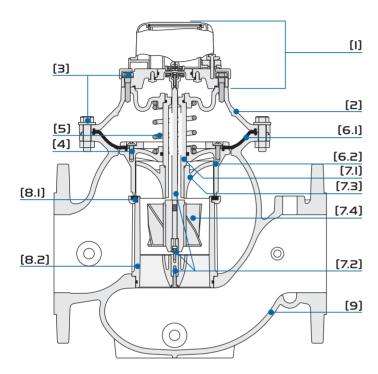

[7] Integrated Calibration Device

Enables recalibration instead of renovation when the recommended standard accuracy period has elapsed (The Calibration Device is stamped closed with a metal seal).

[8] Wid∈ Body

Hydro-dynamically designed for efficient flow with minimal pressure loss and excellent resistance to cavitation.

[8.1] End Connections conform to pressure ratings and standards: ISO, ANSI, JIS, BS, and others.


Product Parts Features

900-M Series

Metric

Construction Materials

- [1] Control Head: Plastic, Stainless Steel and Brass
- [2] Cover: Polyester Coated Ductile Iron to EN 1563
- [3] External Bolts / Nuts: Zinc-Cobalt Plated Steel
- [4] Internal Bolts, Nuts and Washers: Stainless Steel 304 and 316
- [5] Spring: Stainless Steel 302
- [6] Closure Assembly:
 - [6.I] Diaphragm: Reinforced Natural Rubber (NR)
 - [6.2] Closure: Glass Fiber Reinforced Nylon
- [7] Impeller Assembly:
 - [7.1] Guide: Stainless Steel 303
 - [7.2] Pivots, Bearings, and Thrust Bearings: Tungsten Carbide
 - [7.3] Upper Flow Straightener: Glass Fiber Reinforced Nylon
 - [7.4] Impeller: Polypropylene
- [8] Impeller Housing Assembly:
 - [8.I] Seal Seat: NBR (Buna-N) Vulcanized Brass
 - [8.2] Impeller Housing and Lower Flow Straightener: Glass Fiber Reinforced Nylon
- [9] Valve Body: Polyester Coated Ductile Iron to EN 1563 or Cast Iron

O-Rings: NBR (Buna-N)

Coating: Electrostatic Powder Polyester Green RAL 6017, 150 mµ

Technical Data

900-M Series

Metric

Technical Specifications

Available Patterns, Sizes & End Connections:

Connections	DN40	DN50	DN65	DN80R	DN80	DN100	DN150	DN200	DN250
Threaded	G	G&A		G					
Threaded (Male)	G	G							
Flanged			H*	G	G & A	G, A & H	G & A	G&A	G
Flange Inlet \ Thread Outlet		Α	H*	G		Н			

G = Globe, A = Angle 90°, H=Hydrant (Angle 120°) * Triangle Flange Inlet

Connections Standard:

Flanged: ISO 7005-2 (PN10 & 16)

Triangle Flange (DN65 inlet only)
Threaded: Rp ISO 7/1 (BSP.P) or NPT

Pressure Rating: PN16
Operating Pressure Ranges:

PN10: 0.5-10 bar PN16: 0.5-16 bar

For lower pressure requirements, consult factory

Temperature: Water up to 50°C

Pulse Options:

Register Type			Reed Switc	h - Si	ngle			Reed Switch - Combined		
Pulse Per Size Range	10 liter		10 liter 100 liter		1 m³	10 m ³		10 liter + 100 liter		100 liter + 1 m³
DN40-DN100			-		•			•		•
DN150-DN250										
Register Type	Opto-	Electric		Op	oto-Electr	ic + Reed	d Swite	ch - Combin	ed	
Pulse Per Size Range	1 liter	10 liter	1 liter (Op 100 liter (R	to) + leed)	1 liter (0 1 m³ (l		10 lit 1 n	er (Opto) + n³ (Reed)	10 1	liter (Opto) + 0 m³ (Reed)
DN40-DN100 DN150-DN250	•		•		•					•

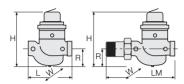
Pulse Electric Data:

Reed-Switch: Switching voltage: 48 VAC/DC max

Switching current: 0.2A max Switching power: 4W max

Opto-Electric: Supply voltage: 5-12 VDC

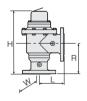
Output type: complementary Output current: 200 mA


Dimensions & Weights

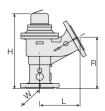
900-M Series

Metric

Globe Pattern


Coni	nection Type	Threaded								
Size		DN40	DN50	DN80R						
L	(mm)	250	250	250						
LM	(mm)	317	327	N/A						
W	(mm)	137	137	137						
Н	(mm)	270	277	277						
R	(mm)	95	95	79						
Weig	jht (kg)	7.2	7.3	7.3						

Globe Pattern

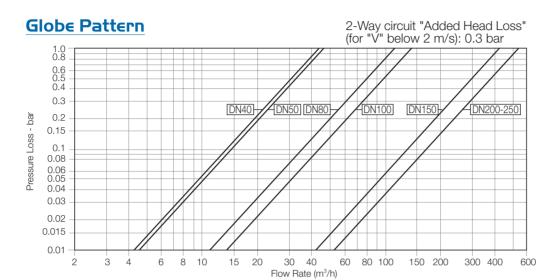

Con	nection Type		Flanged										
Size		DN80R	DN80	DN100	DN150	DN200	DN250						
L	(mm)	310	300	350	500	600	600						
W	(mm)	200	210	250	380	380	405						
Н	(mm)	298	382	447	602	617	617						
R	(mm)	100	123	137	216	228	228						
Weight (kg)		16.0	23.0	31.0	71.0	93.0	140.5						

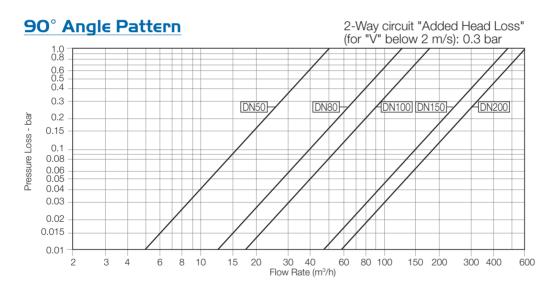
90° Angle Pattern

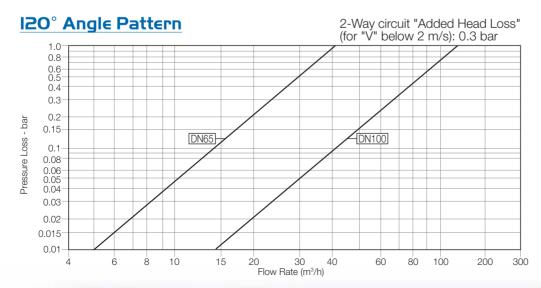
Conn	nection Type	Threaded	l Flanged							
Size		DN50	DN80	DN100	DN150	DN200				
L	(mm)	120	150	180	250	250				
W	(mm)	137	210	250	380	380				
Н	(mm)	300	402	481	585	585				
R	(mm)	125	196	225	306	280				
Weigh	ht (kg)	8.1	25.8	36.1	76.7	82.5				

120° Angle Pattern

Con	onnection Type Flanged Inlet / Threaded Outlet			Flanged Inle	et and Outlet
Size		DN65	DN100	DN65	DN100
L	(mm)	143	208	143	208
W	(mm)	137	217	200	223
Н	(mm)	410	450	410	450
R	(mm)	273	283	273	283
Weig	ght (kg)	10.5	24.8	12.9	27.9




Flow Charts


900-M Series

Metric

Flow Properties

900-M Series

Metric

		Size	DN40	DN50	DN65	DN80R	DN80	DN100	DN150	DN200	DN250
Globe	<u> </u>	Kv	41	46	N/A	50	115	147	430	550	550
Pattern		K	2.4	4.6	N/A	24.7	4.9	7.3	4.3	8.3	20.2
		Leq - m	4.8	12.9	N/A	109.7	21.6	42.7	42.9	110.5	337.2
OO O A nala	Д	Kv	N/A	51	N/A	N/A	126	180	473	605	N/A
90°Angle Pattern		K	N/A	3.8	N/A	N/A	4.0	4.8	3.5	6.8	N/A
1 attorn		Leq - m	N/A	10.5	N/A	N/A	18.0	28.4	35.5	91.3	N/A
10004	<u> </u>	Kv	N/A	N/A	51	N/A	N/A	147	N/A	N/A	N/A
120°Angle Pattern		K	N/A	N/A	3.8	N/A	N/A	7.3	N/A	N/A	N/A
rattorri	8	Leq - m	N/A	N/A	10.5	N/A	N/A	42.7	N/A	N/A	N/A

Valve flow coefficient, Kv or Cv

 $Kv(Cv)=Q\sqrt{\frac{G_f}{\Lambda P}}$

Kv = Valve flow coefficient (flow in m³/h at 1bar Diff. Press.)

Cv = Valve flow coefficient (flow in gpm at Diff. Press. 1psi)

 $Q = Flow rate (m^3/h ; gpm)$

 $\triangle P = \text{Differential pressure (bar ; psi)}$

Gf = Liquid specific gravity (Water = 1.0)

Kv = 0.865 Cv

Flow resistance or Head loss coefficient,

 $K = \Delta H \frac{29}{V^2}$

K = Flow resistance or Head loss coefficient (dimensionless)

 $\Delta H = \text{Head loss (m ; feet)}$

V = Nominal size flow velocity (m/sec; feet/sec.)

= Acceleration of gravity (9.81 m/sec²; 32.18 feet/sec²)

Equivalent Pipe Length, Leq

 $Leq = Lk \cdot D$

Leq = Equivalent nominal pipe length (m; feet)

Lk = Equivalent length coefficient for turbulent flow in clean

commercial steel pipe (SCH 40)

= Nominal pipe diameter (m; feet)

Note:

The Leq values given are for general consideration only.

Accuracy Table

	Accuracy	DN40	DN50	DN65	DN80	DN100	DN150	DN200	DN250
Q1 Minimum Flow	±5%	0.8	0.8	1.2	1.2	1.8	4	6.3	6.3
Q2 Transitional Flow	±2%	1.3	1.3	1.9	3	4.5	10	15.8	15.8
Qn Nominal Flow ISO 4064-1-1993	±2%	15	15	25	40	60	150	250	400
Q3 Permanent Flow	±2%	25	40	40	100	160	250	400	400
Q4 Maximum Flow (Short Time)	±2%	31	50	50	125	200	313	500	500
Q2/Q1	-	1.6	1.6	1.6	2.5	2.5	2.5	2.5	2.5
Q3/Q1	-	50	50	33	83	89	63	63	63
Class ISO 4064-1-1993	-	Α	Α	Α	В	В	В	В	В

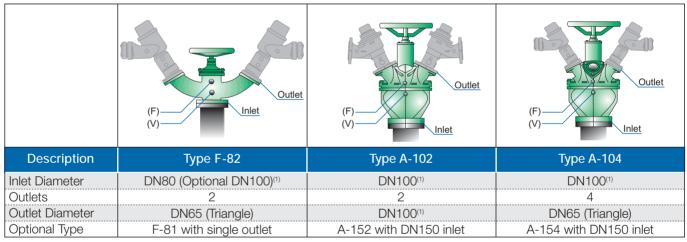
Irrigation Hydrant Valve

900-M Series

Metric

The Irrigation Hydrant is a unique valve assembly unit designed for irrigation and water supply distribution for multiple farm units.

The Irrigation Hydrant consists of two main parts: an Irrigation Hydrant Valve and Hydrometers Type H mounted on top of the Irrigation Hydrant Valve.


Hydrometer Type H

The Hydrometer Type H is a 120-degree elbow-shaped Hydrometer that integrates both a vertical turbine Woltman-type water meter, with a diaphragm actuated hydraulic control valve. It meets the full range of applications of the BERMAD 900-M Series. The Hydrometer Type H is available in two sizes: DN: 65 & 100.

Irrigation Hydrant Valve

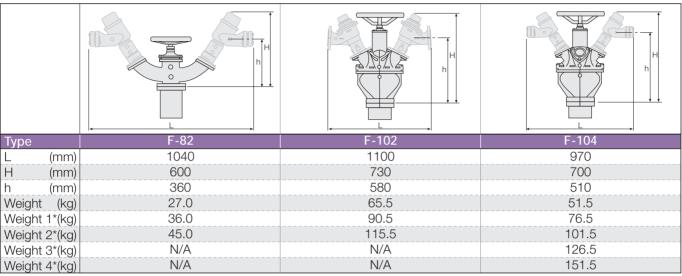
The Irrigation Hydrant Valve is available in three inlet sizes: DN: 80, 100 & 150. It is an on/off hand-wheel operated valve with a single flange inlet and one, two, three or four distribution outlets.

The Irrigation Hydrant Valve is available in three Model Types:

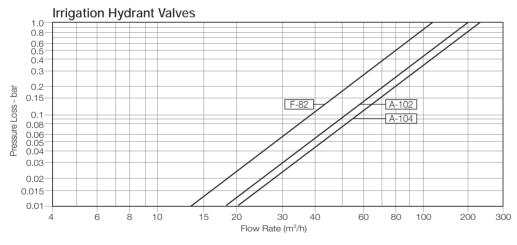
(1) Conforming to major standards

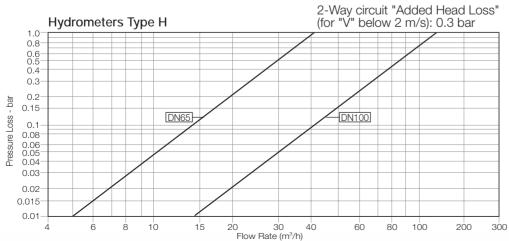
(F) Optional port for Automatic Anti-Freezin (V) Optional port for Air Venting Cock Valve Optional port for Automatic Anti-Freezing Cock Valve

Description	Quick Coupling & Plug (Guillemin Coupling)	Flange Adapter	Cover (Blind Triangle Flange)	Cover (Blind Flange)
Size	DN65	DN100 X DN65	DN65	DN100
Note	For use on DN65	For installing DN65	For blocking unused F-82	For blocking unused
	Hydrometer with	Hydrometer on A-102	and F-104 Irrigation	DN100 flange outlets
	threaded outlet	irrigation Hydrant Valve	Hydrant Valve outlets	


Irrigation Hydrant Valve

900-M Series

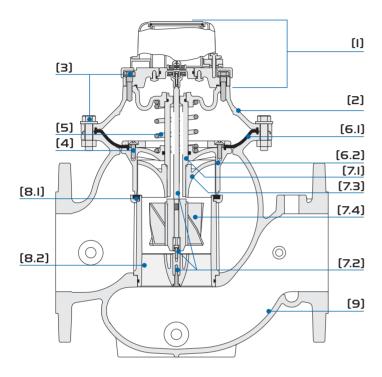

Metric


Dimensions & Weights

^{*} Number of Hydrometers installed.

Flow Charts

info@bermad.com • www.bermad.com


Dimensions & Weights

900-M Series

English

Construction Materials

- [I] Control Head: Plastic, Stainless Steel and Brass
- [2] Cover: Polyester Coated Ductile Iron to ASTM A536
- [3] External Bolts / Nuts: Zinc-Cobalt Plated Steel
- [4] Internal Bolts, Nuts and Washers: Stainless Steel 304 and 316
- (5) Spring: Stainless Steel 302
- [6] Closure Assembly:
 - [6.I] Diaphragm: Reinforced Natural Rubber (NR)
 - [6.2] Closure: Glass Fiber Reinforced Nylon
- [7] Impeller Assembly:
 - [7.I] Guide: Stainless Steel 303
 - [7.2] Pivots, Bearings, and Thrust Bearings: Tungsten Carbide[7.3] Upper Flow Straightener: Glass Fiber Reinforced Nylon
 - [7.4] Impeller: Polypropylene
- [8] Impeller Housing Assembly:
 - [8.I] Seal Seat: NBR (Buna-N) Vulcanized Brass
 - **(8.2) Impeller Housing and Lower Flow Straightener**: Glass Fiber Reinforced Nylon
- (9) Valve Body: Polyester Coated Ductile Iron to ASTM A-536 or Cast Iron to ASTM A-126 Class B

O-Rings: NBR (Buna-N)

Coating: Electrostatic Powder Polyester Green RAL 6017, 150 mµ

Technical Data

900-M Series

Technical Specifications

Available Patterns, Sizes & End Connections:

Connections	1 ¹ / ₂ "	2"	21/2"	3″R	3"	4"	6"	8"	10"
Threaded	G	G&A		G					
Threaded (Male)	G	G							
Flanged			H*	G	G&A	G, A & H	G & A	G&A	G
Flange Inlet \ Thread Outlet		А	H*	G		Н			

G = Globe, A = Angle 90°, H= Hydrant (Angle 120°) * Triangle Flange Inlet

Connections Standard:

Flanged: ANSI B16.41 (Cast Iron) ANSI B16.42 (Ductile Iron)

Triangle Flange (2¹/₂" inlet only)
Threaded: NPT or Rp ISO 7/1 (BSP.P)

Pressure Rating Classes: Cast Iron - #125; Ductile Iron - #150

Operating Pressure Ranges:

Class #125: 7-150 psi; Class #150: 7-250 psi For lower pressure requirements, consult factory

Temperature: Water up to 122°F

Pulse Options:

Register Type			Reed Swite	ch - S	ingle			Reed Swit	tch ·	- Combined
Pulse Per Size Range	1 gallon		10 gallon	100	0 gallon	1000 g	1000 gallon		+ 1	10 galon + 100 gallon
11/2"-4"								•		
6"-10"										
Register Type	Opto-E	Electric		0	pto-Electri	ic + Reed	d Swite	ch - Combir	ned	
Pulse Per Size Range	0.1 gallon	1 gallon	0.1 gallon (Opto) + 0.1 gallon (Opto) + 1 gallon (Reed) 10 gallon (Reed) 10			1 gallo 100	on (Opto) + O (Reed)	1 g	pallon (Opto) + 1000 (Reed)	
11/2"-4"	•		•		•					
6"-10"										•

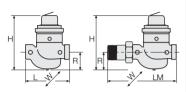
Pulse Electric Data:

Reed-Switch: Switching voltage: 48 VAC/DC max

Switching current: 0.2A max Switching power: 4W max

Opto-Electric: Supply voltage: 5-12 VDC

Output type: complementary
Output current: 200 mA


Dimensions & Weights

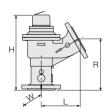
900-M Series

English

Globe Pattern

Con	nection Type	De Threaded								
Size)	1 ¹ /2"	2"	3"R						
L	(inch)	9 ¹³ / ₁₆	9 ¹³ / ₁₆	9 ¹³ / ₁₆						
LM	(inch)	12 ¹⁷ / ₁₆	12 ¹³ /16	N/A						
W	(inch)	5 ³ /8	5 ³ /8	5 ³ /8						
Н	(inch)	10 ⁵ /8	10 ¹⁵ /16	10 ¹⁵ / ₁₆						
R	(inch)	3.	3 ³ / ₄	31/8						
Weig	ght (lb)	15.9	16.1	16.1						

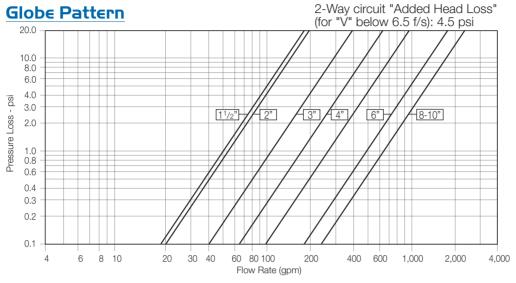
Globe Pattern

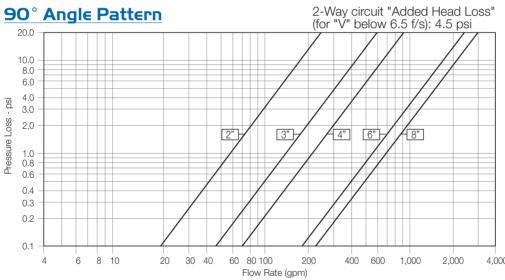

Con	nection Type	Flanged							
Size	;	3″R	3″	4"	6"	8″	10"		
L	(inch)	12 ³ /16	11 ¹³ /16	13 ³ /4	19 ¹¹ / ₁₆	23 ⁵ /8	23 ⁵ /8		
W	(inch)	7 ⁷ /8	8 ¹ / ₄	9 ¹³ / ₁₆	14 ¹⁵ /16	14 ¹⁵ /16	15 ¹⁵ /16		
Н	(inch)	11 ³ / ₄	15 ¹ / ₁₆	17 ⁵ /8	23 ¹¹ / ₁₆	24 ⁵ /16	24 ⁵ /16		
R	(inch)	3 ¹⁵ /16	4 ¹³ /16	5 ³ /8	81/2	9	9		
Wei	ght (lb)	35.3	50.7	66.1	154.3	202.8	309.1		

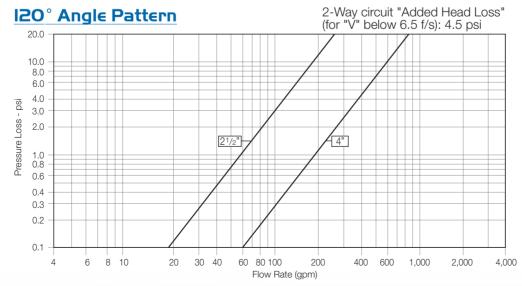
90° Angle Pattern

Cor	nection Type	Threaded	Flanged					
Size)	2"	3″	4"	6"	8″		
L	(inch)	43/4	5 ¹⁵ /16	7 ¹ /16	9 ¹³ /16	9 ¹³ /16		
W	(inch)	5 ³ /8	81/4	9 ¹³ / ₁₆	14 ¹⁵ /16	14 ¹⁵ /16		
Н	(inch)	11 ¹³ / ₁₆	15 ¹³ /16	18 ¹⁵ /16	23	23		
R	(inch)	4 ¹⁵ /16	73/4	8 ⁷ /8	12 ¹ /16	11		
Wei	ght (lb)	17.4	56.2	78.9	168.4	181.2		

120° Angle Pattern


Connection Type Flanged In			Threaded Outlet	Flanged Inlet and Outlet			
Size		21/2"	4"	21/2"	4"		
L	(inch)	5 ⁵ /8	8 ³ /16	5 ⁵ /8	8 ³ /16		
W	(inch)	5 ³ /8	8 ⁹ /16	7 ⁷ /8	83/4		
Н	(inch)	16 ¹ /8	17 ¹¹ / ₁₆	16 ¹ /8	17 ¹¹ / ₁₆		
R	(inch)	103/4	11 ¹ /8	10 ³ / ₄	11 ¹ /8		
Wei	ght (lb)	22.7	54.0	28.0	60.8		





Flow Charts 900-M Series

Flow Properties

900-M Series

English

		Size	1 ¹ /2"	2"	2 ¹ /2"	3″R	3"	4"	6"	8"	10"
Globe Pattern	<u> </u>	Cv	47	53	N/A	58	133	170	497	636	636
		K	2.4	4.6	N/A	24.7	4.9	7.3	4.3	8.3	20.2
		Leq - f	15.7	42.2	N/A	359.8	70.8	139.9	140.8	362.5	1106.4
0004		Cv	N/A	59	N/A	N/A	146	208	547	699	N/A
90°Angle Pattern		K	N/A	3.8	N/A	N/A	4.0	4.8	3.5	6.8	N/A
1 attorn		Leq - f	N/A	34.3	N/A	N/A	58.9	93.3	116.3	299.6	N/A
120°Angle Pattern		Cv	N/A	N/A	59	N/A	N/A	170	N/A	N/A	N/A
		K	N/A	N/A	3.8	N/A	N/A	7.3	N/A	N/A	N/A
	18	Leq - f	N/A	N/A	34.3	N/A	N/A	139.9	N/A	N/A	N/A

Valve flow coefficient, Cv or Kv

 $Cv(Kv)=Q\sqrt{\frac{G_f}{\Delta P}}$

Where:

Kv = Valve flow coefficient (flow in m³/h at 1bar Diff. Press.)

Cv = Valve flow coefficient (flow in gpm at Diff. Press. 1psi)

Q = Flow rate (gpm; m^3/h)

 $\Delta P = Differential pressure (psi; bar)$

Gf = Liquid specific gravity (Water = 1.0)

Cv = 1.155 Kv

Flow resistance or Head loss coefficient,

 $K = \Delta H \frac{29}{V^2}$

Where:

K = Flow resistance or Head loss coefficient (dimensionless)

 $\Delta H = \text{Head loss (feet ; m)}$

V = Nominal size flow velocity (feet/sec; m/sec.)

g = Acceleration of gravity (32.18 feet/sec²; 9.81 m/sec²)

Equivalent Pipe Length, Leq

 $Leq = Lk \cdot D$

Where:

Leg = Equivalent nominal pipe length (feet; m)

Lk = Equivalent length coefficient for turbulent flow in clean

commercial steel pipe (SCH 40) = Nominal pipe diameter (feet; m)

Note:

The Leq values given are for general consideration only. Actual Leq may vary somewhat with each of the valve sizes.

Accuracy Table

	Accuracy	1 ¹ /2"	2″	2 ¹ /2"	3″	4"	6"	8″	10″
Q1 Minimum Flow	±5%	3.5	3.5	5.3	5.3	7.9	17.6	27.7	27.7
Q2 Transitional Flow	±2%	5.7	5.7	8.4	13.2	19.8	44	69.6	69.6
Nominal Flow ISO 4064-1-1993	±2%	66	66	110	176	264	660	1100	1761
Q3 Permanent Flow	±2%	110	176	176	440	704	1100	1761	1761
Q4 Flow Maximum (Short Time)	±2%	136	220	220	550	880	1378	2201	2201
Q2/Q1	-	1.6	1.6	1.6	2.5	2.5	2.5	2.5	2.5
Q3/Q1	-	50	50	33	83	89	63	63	63
Class ISO 4064-1-1993	-	Α	Α	Α	В	В	В	В	В

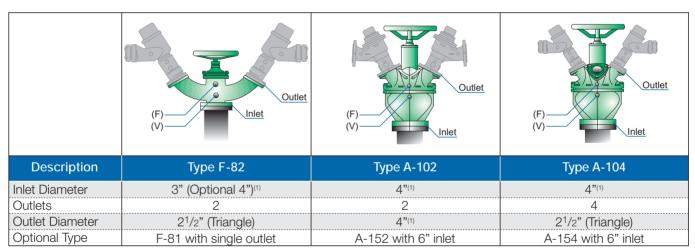
Irrigation Hydrant Valve

900-M Series

English

The Irrigation Hydrant is a unique valve assembly unit designed for irrigation and water supply distribution for multiple farm units.

The Irrigation Hydrant consists of two main parts: an Irrigation Hydrant Valve and Hydrometers Type H mounted on top of the Irrigation Hydrant Valve.


Hydrometer Type H

The Hydrometer Type H is a 120-degree elbow-shaped Hydrometer that integrates both a vertical turbine Woltman-type water meter, with a diaphragm actuated hydraulic control valve. It meets the full range of applications of the BERMAD 900-M Series. The Hydrometer Type H is available in two sizes: $2^{1}/2^{1}$ & 4".

Irrigation Hydrant Valve

The Irrigation Hydrant Valve is available in three inlet sizes: 3", 4" & 6". It is an on/off hand-wheel operated valve with a single flange inlet and one, two, three or four distribution outlets.

The Irrigation Hydrant Valve is available in three Model Types:

(1) Conforming to major standards

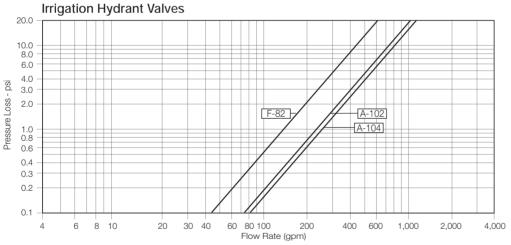
(F) Optional port for Automatic Anti-Freezing Cock Valve

(V) Optional port for Air Venting Cock Valve

Description	Quick Coupling & Plug (Guillemin Coupling)	Flange Adapter	Cover (Blind Triangle Flange)	Cover (Blind Flange)
Size	21/2"	4" X 2 ¹ / ₂ "	2 ¹ / ₂ "	4"
Note	For use on 2 ¹ / ₂ "	For installing 21/2"	For blocking unused F-82	For blocking unused
	Hydrometer with	Hydrometer on A-102	and F-104 Irrigation	4" flange outlets
	threaded outlet	irrigation Hydrant Valve	Hydrant Valve outlets	

Irrigation Hydrant Valve

900-M Series


English

Dimensions & Weights

Dimensions Drawing	H	H	H h
Туре	F-82	F-102	F-104
L (inch)	40 ¹⁵ /16	43 ⁵ /16	38 ³ /16
H (inch)	23 ⁵ /8	28 ³ / ₄	27 ⁹ /16
h (inch)	14 ³ / ₁₆	22 ¹³ / ₁₆	20 ¹ / ₁₆
Weight (lb)	59.6	144.4	113.6
Weight 1* (lb)	79.4	199.5	168.7
Weight 2* (lb)	99.2	254.6	223.8
Weight 3* (lb)	N/A	N/A	278.9
Weight 4* (lb)	N/A	N/A	334.0

^{*} Number of Hydrometers installed.

Flow Charts

info@bermad.com • www.bermad.com