

Combination air valve for low pressure applications Mod. FOX 3F - M*- LP

The air valve will ensure the proper operation of the pipeline networks allowing the release of the air pockets during working conditions, the evacuation and the entrance of large volumes of air in case of filling and draining operations.

Construction and advantages

- Body in ductile cast iron provided with internal ribs for consistent and accurate assembly guiding, NP 40.
- Supplied with fixed or mobile flanges drilled according to ISO standard (other drillings on request) NP 10/16/25/40.
- Drainage valve for chamber control and draining.
- High sensitivity m**obile block** group formed by a full polypropylene cylindrical float (**) and an upper disk in polypropylene.
- Nozzle and gasket holder (pat. pending) wear resistant thanks to **gasket compression control**.
- Maintenance can be easily performed from the top without removing the air valve from the pipe.
- Low pressure sealing guaranteed
- *Mesh and cap in stainless steel

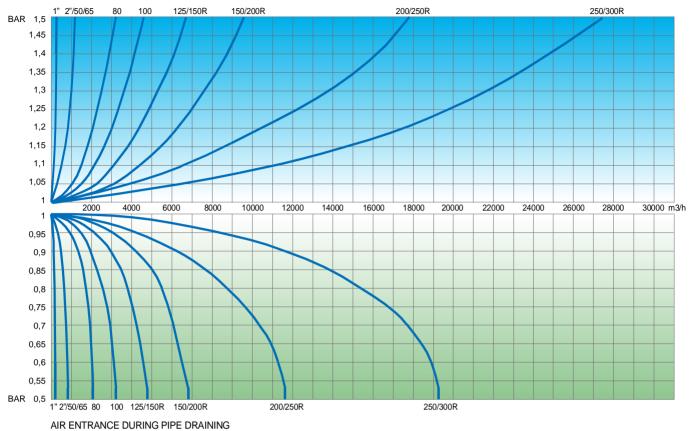
Operating principle

- 1) Discharge of large volumes of air During pipe filling it is necessary to discharge as much air as water flows in.
- **2)** Entrance of large volumes of air During pipeline draining or bursting phases it is necessary to bring in as much air as the quantity of out-flowing water to avoid vacuum conditions.

3) Air release during working conditions. During operation, an air pocket is accumulated in the upper part of the valve, little by little it is compressed and its pressure arrives to water pressure, its volume increases pushing water downwards. Following Archimede's principle the float, no longer sustained by water thrust, will fall down to free the nozzle hole helping

For air flow performances of FOX 3F- M - LP please refer to the chart depicted on the next page.

the release of the air pocket, while the upper disk will close the main orifice due to internal pressure.


(**) Full polypropylene cylindrical floats to avoid deforming phenomena at high pressure and lathe shaped to guarantee: a) a greater sliding precision inside the body processed ribs;

b) a perfectly vertical thrust;

Air flow performance charts.

Working conditions

Potable water 60°C/158 °F Max; Maximum pressure 40 bar/580 psi; Minimum pressure 0.15 bar/2.17 psi

Technical features

Body and flanges in GS 400-15 epoxy powder coated using fluidized bed technology

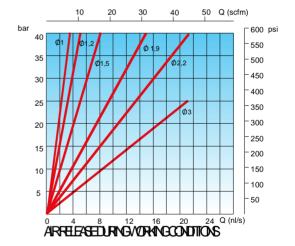
Cap and mesh in stainless steel

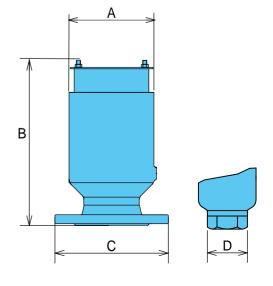
Seat in stainless steel

Upper flat in polypropylene

Nozzle in stainless steel

Float in polypropylene


Nuts and bolts in stainless steel


Gaskets in NBR

Drainage valve in stainless steel.

EXECUTION	А	В	C (M.F.)*	C (F.F.)*	D	Weight Kg.
Threaded 1"	93	217	=	1	CH45	3,3
Threaded 2"	118	277	=	=	CH75	6,1
Flanged 50	118	290	165	165	=	8,1
Flanged 65	118	290	185	185	=	8,6
Flanged 80	142	322	200	205	=	11,1
Flanged 100	180	364	220	235	=	18,5
Flanged 150R	218	435	285	300	=	34,5
Flanged 150	261	500	285	300	=	49,0
Flanged 200R	261	500	340	375	=	51,0
Flanged 200	333	574	340	375	=	94,0
Flanged 250R	333	574	=	400	=	102,0
Flanged 250	414	735	=	450	=	121,0
Flanged 300R	414	735	=	455	=	127,0

^{*} M.F. = mobile flanges version

^{*} F.F. = fixed flanges version